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Abstract. In engineering, for many practical applications fluid-body interactions are commonly encountered and 

thereby these interactions have to be extensively studied. Though this body-fluid interaction is studied in the 

past, the concept of interaction analysis, form optimization relating to axis symmetry geometries till date mostly 

need to be further explored. The present work is devoted to the analysis of fluid (air) to body (prism) interaction, 

form (or shape) optimization taking into account various criteria and energy extraction from air flow by using an 

axial symmetric body (circular disc shaped geometry with alternate perforated quadrants) with plane symmetry 

(cylinders) is considered. A simplified mathematical model for engineering calculations is proposed. The model 

is based on the concept of pressure (compression) and suction zones, when a body is subjected to fluid (air) flow. 

Initially, all calculations are performed for the geometry under study in constant dimensions. Further, for better 

efficiency of the overall system, the system parameters are changed in constant continuous steps by a detailed 

analysis of the fluid-body interaction response surface. The mathematical model has the following assumptions: 

the fluid (air) flow is laminar, non-compressible (density constant) and the fluid (air) viscous is ignored. All the 

results obtained are discussed in graphs and explained. Three-dimensional fluid flow simulations are performed 

in ANSYS, steady state RANS is solved using Kε realizable turbulence model, the interaction force (Drag) is 

obtained for the geometry under study. Finally, the results relating to form (or shape) optimization and the 

application of the concept are widely discussed. 

Keywords: flow-body interaction, energy generation, shape optimization. 

Introduction 

Fluid-rigid body interaction is an age-old , frequently occuring phenomenon, which finds wide 

application in engineering and medical fields when a rigid-body is completely immersed in fluid. 

Though this interaction phenomenon is well known, the analysis is not extended for the interaction 

force deviation( force along the flow direction) and further form optimization as a result of fluid-body 

interaction pertaining to axis symmetry geometries till date remains mostly unexplored.The basic idea 

behind the present work is to extend the concept of interaction analysis for estimating the interaction 

force deviation by varying the forms only in the leeward side (suction) as a simple task to optimize the 

interaction force and the same fluid – body interaction phenomenon is further extended to analyze the 

concept of energy extraction with the help of an alternate perforated circular disc in air through a 

straight forward mathematical model. It is realized that when the body is subjected to air flow, the 

space around the body in the fluid medium could be split into zones; upstream a pressure zone and 

down stream immediate to the body a suction or vacuum zone is formed [1-3]. In the present work the 

concept of zones is taken adavantage to analyse the task of form optimization by considering different 

stationary objects in the fluid flow. As understood from the existing research work that viscosity plays 

a secondary role in estimating the performance [4], the viscous effects are ignored, but the shape 

factors are still considered here in the present work due to the form of the prism (star geometry ) and 

system parameters are changed based on the fluid body interaction response. 

In the present work, the form optimization task for a stationary body is analysed using ANSYS 

(3D Flow simulations) and an important conclusion has been drawn keeping in view the concave and 

convex object forms and further, importance of form optimization for excitation efficiency for the 

extraction of energy from the air stream is analysed in detail in later sections. All the equations are 

formed as per the laws of classical mechanics and the only disadvantage of the model is that the 

viscous nature of the fluid or surrounding medium is ignored when forming the mathematical model. 

According to the laws of mechanics, for a stationary rigid-body fluid flow interaction, a well-

known practice is applied in the formula Eq. (1), [5]: 

 21
,

2
dF V C Aρ=  (1) 

where F – interaction force;  
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 ρ – density of air;  

 V – air relative velocity;  

 Cd – drag coefficient;  

 A – frontal area.  

The drag coefficient Cd  is approximately constant in a region of high Reynolds number 

Re > 1000, Eq. (2) [5; 6]: 

 Re ,
V lρ

µ
=  (2) 

where  l – characteristics length, the chord width of the object under study;  

 μ – dynamic viscosity of the fluid.  

In common engineering studies, when there is no change in the velocity V both in magnitude and 

direction, the Reynolds number range (2) (Re > 1000; v > 0; μ →0) permits the use of the formula (1). 

In the case of non-stationary motion, the formula (1) cannot be used because of the constantly 

changing: the velocity of motion V, the coefficient Cd and the Reynolds number Re. Similarly, in the 

case of non – stationary motion, especially for the task of form optimization, the space – time 

programming method needs huge computational work and is time consuming. Therefore, it would be 

desirable for engineers to develop approximate methods that can be tested and applied to stationary 

motions, when: V = const; Re = const; Cd = const. For this purpose, the shape optimization problem 

model is shown in Fig. 1, the task here is to know the form of the prism (frontal, rear) section should 

be to obtain the minimum (or maximum) value of the criterion, if the prism is subjected to (immersed 

in) fluid flow. 
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d

F V C Aρ=  

 

 

 

 

 

 

Fig. 1. Star prism stationary rigid body interaction with fluid flow: 1 – star shaped prism 

(cylinder); 2 – air flow with velocity V (from right to left); 3 – frontal area A, prism height B 

Works related to special cases of non-stationary flow of objects are analytically described in [1-3]. 

In these works, the interaction is divided into the compression and suction zones for the space around 

the body in the fluid flow(air). It is explained in [1-3] that the suction side requires experimental or 

computer modeling studies to determine the interaction. Accordingly, on the compression (upstream) 

side, it is possible to calculate the interaction using classical mechanics: using the change in 

momentum. In the present work, at first we consider a stationary-body in flow, experimental studies of 

the drag force, here called as interaction force, values for various objects mentioned in Fig. 2 by 

looking at differently shaped intersecting objects and their interaction forces in fluid flow, important 

conclusions for all types of engineering calculations could be obtained, as mentioned in the following. 

1. For a similar shape in the compression zone (upstream flow), but a different shape in the suction 

zone, the drag coefficient can be assumed constant for all engineering calculations (accuracy 

about till 2 % for 2D model). 
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2. The optimization criterion given here, when optimizing different shapes, should focus on the 

shape of the compression zone (most Cd – dependent) or the interaction area A (for example, 

using perforated form). 

3. It is important to note that for tasks that require the application of force in perpendicular to the 

flow (lifting force), the shape of the suction side must also be optimized (Fig. 1). 

4. Thereby, the criteria for shape (form) optimization could be for any of the following : a) drag or 

lifting forces; b) vibration damping; c) excitation efficiency for the extraction of energy from the 

air stream (Fig. 1).  
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Fig. 2. Drag coefficient for axially prismatic 2 D flow [6]: Cd – drag coefficient 

Optimization challenges today are available in wide analytical theory, started in the middle of the 

20 th century [7-10]. The main task is to solve the flow and object interaction, through approximate 

analytical relationships, which can be achieved as mentioned in the subsequent section. To this end, 

surfaces formed by fractured planes in the form of curved or concave geometric configurations, 

possibly with their perforations, are further discussed herein.  

Materials and methods 

1. Model of convex broken side prism and analytical investigation method 

The convex broken side model four-corner prism is described in Fig. 3. For the frontal sides 

pressures p1, p2, p3 the theorem of the change momentum of flow in the differential form can be 

applied [3] and the force can be calculated according to Eq. (3): 

 

Fig. 3. Model of convex broken prism: L1, L2 – length of sides; β1, β2 – frontal angles; H – height 

of the prizm;  – symbol of flow direction on the body surface as a result of air to body interaction 

 2
1 [ cos( 1)]p V β ρ= ⋅ ⋅ ; 2

2 [ cos( 2)]p V β ρ= ⋅ ⋅ ;  

 ]2 23 cos( 3) 12 23 cos( 2) sin( 3 2)p V C Cρ β β β β= ⋅ ⋅ − ⋅ ⋅ ⋅ − , (3) 

where β1, β2, β3 – orientation angles of the sides relative to the flow;  

 C12, C23 – constants that observe changes in the flow velocity along the flow line along 

 the boundary layer at break points.  

So, for example, C12 = C23 = 1, means that the velocity at the point of the break does not change 

and is the same as for all the flow at the beginning, equal to V. Accordingly, the pressure p4 in the 

suction zone between the edges of the rapture can be determined as follows Eq. (4) [1-3]: 
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 2
4 4p C V ρ= ⋅ ⋅ , (4) 

where C4 is a constant, for example C4 = 0.5 [1].  

It should be noted in the calculations that these formulas are applicable to prism that has convex 

surfaces in the pressure zone, for example:  

 0 < β4 < π·2
-1

; π > β4 + β3 > 0; β3 – β2 > 0. (5) 

Using equations (3) and (4), we can obtain the following projections of the interaction forces on 

the x and y-axes (6), (7): 

 

[ ] [ ]

]

3 32

3

{ 1 cos( 1) 2 cos( 2)

3 cos( 3) 12 23 cos( 2) cos( 3) sin( 3 2)

4 4 cos( 4)};

Fx V B L L

L C C

L C

ρ β β

β β β β β

β

− = ⋅ ⋅ ⋅ ⋅ + ⋅ +

+ ⋅ − ⋅ ⋅ ⋅ ⋅ − +

+ ⋅ ⋅

 (6) 

 

[ ] [ ]

]

2 22
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{ 1 cos( 1) sin( 1) 2 cos( 2) sin( 2)

3 cos( 3) sin( 3) 12 23 cos( 2) sin( 3) sin( 3 2)

4 4 sin( 4)}.

Fy V B L L

L C C

L C

ρ β β β β

β β β β β β

β

− = ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ +

+ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ − +

+ ⋅ ⋅

 (7) 

When analyzing or optimizing these forces (Fx - drag force (along flow direction), Fy – lift-force 

(perpendicular to flow direction) the following geometric links must be additionally observed (8), (9): 

 4 sin( 4) 3 sin( 3) 2 sin( 2) 1 sin( 1) 0;L L L Lβ β β β⋅ + ⋅ + ⋅ − ⋅ =  (8) 

 4 cos( 4) 3 cos( 3) 2 cos( 2) 1 cos( 1) 0.L L L Lβ β β β⋅ − ⋅ − ⋅ − ⋅ =  (9) 

2. Analytical investigation method of concave broken side prism 

In this case, there exists the impact force N3 on the edge of the inner breakage. The force N3 is 

perpendicular to the edge of the length L3, as shown in Fig. 4. According to boundary layer 

momentum exchange for the airflow, changing the direction from the edge L2 to edge L3, gives the 

impact force N3 (10): 

 2
3 2 cos( 2) sin( 2 3) [0.5 0.5 ( 2 3)].N L B V signρ β β β β β= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + ⋅ −  (10) 

Here the criterion for taking concave case is when: sin(β2 – β 3) ≥ 0. 

Accordingly, in the equations (6), (7) should be dropped the part by the minus sign, since this 

interaction is equivalent to N3. However, if there is no such theoretical force in the flow interaction, 

the flow to be smooth over the entire surface with the length L3, it is recommended that the previous 

formulas (6), (7) are used in good approximation. 

Thus, the relationships obtained above (8)-(10) allow for the analytical study of the interaction of 

various forms of star prisms, solving problems of optimization and synthesis. 

 

Fig. 4. Model of concave star like prism form: L1, L2, L3, L4 – length of sides;  

β1, β2, β3, β4 – frontal angles; H – height of the prism 
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3. Example of form optimization of four – corner star prism 

In the parametric optimization problem, the horizontal force Fx (as a criterion) must be analyzed 

with the restrictions as mentioned, Eq. (8)-(10). Further given: the sides of the star are equal L2 = L3, 

with the height H = constant and β1 = 0. Other parameters V, ρ, B – remain constant. The results of 

optimization (maximum, minimum) K(β2) = Fx/(V
2 

·ρ·L2) are shown in Fig. 5and Fig. 6 for different 

C12, C23 values. This example demonstrates that analytical relationships are obtained, which allow 

for parametric optimization of fluid flow interactions. 
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Fig. 5. Results of four sided -star prism 

optimization, first criterion: K(β2) – drag 

coefficient parallel to flow; C12 = C23 = 1 

Fig. 6. Results of four sided - star prism 

optimization second criterion: K(β2) – drag 

coefficient parallel to flow; C12 = C23 = 0.5 

4. Ansys 3D simulations  

In all 3D simulations performed in ANSYS , steady state RANS is solved using k-ε realizable 

turbulence model. The total length of the domain was 4 m , started at a length of 1.2 m from the body 

under consideration and the total height was 1.92 m. A tetrahedron mesh with a total of 

354221 elements and boundary layers set to stair stepping with maximum of 7 layers was used. The 

inlet condition specified as velocity inlet with a velocity of 10 m·s
-1

 and pressure outlet condition for 

rest of the domain sides. No slip condition was imposed at the stationary wall (geometry for all cases). 

B = 0.16 m; H = 0.16 m; ρ = 1.225 kg·m
-3

 as shown in Fig. 7 , the interaction forces for the five 

forms of the prism were analyzed (Fig. 7). They differ from each other: a) three shapes at 90º of 

uniform triangular at the pressure side (zone, upstream) with flat, or sharp spike (20º) or half-ridge 

(flow height equal to H) suction zone shapes; b) two shapes with the compression area at an angle of 

20º
 
and a flat or sharp back form. 

The main result of numerical modeling is that it confirms the above assumptions: in engineering 

calculations with sufficient accuracy (about 2 %), the pressure in the suction zone along the boundary 

layer is independent of the shape of the object. It is to be noted that the coefficients C12, C23 and C4 

were not analyzed in the present work. 

5. Parametric optimization of circular plate system 

An example of a flat circular plate with alternate perforated quadrants for energy extraction from 

the fluid flow [11] is shown in Fig. 8. Motion analysis in a 2D space is shown in Fig. 9-11. The system 

considered consists of two concentric circular plates fixed at the center, the plate which front area 

subject to fluid flow is to rotate freely over the other circular plate (non-rotating), both plates have the 

same area and alternate perforated quadrants, the spring, the linear generator in the incoming flow 

with a velocity V0 (10 m·s
-1

). 
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 Shape   Pressure contour   Streamlines  Axial force 

deviation 

(a)
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(a) 

  

 

2.00 % 
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Fig. 7. Shape, pressure contour, streamlines for different shapes:  

the percentage of mean deviation of the axial force 
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Fig. 8. Flat circular plate with alternate 

perforated quadrants: V – flow velocity; (-b·vx) 

– generators force; (-c·x) – spring force;  

ω0 – angular velocity of rotating part 

Fig. 9. Area control action: t – time 

Differential equation of plate motion is (11): 

 
[ ]

( ) [ ] 2

0 ( )

1 acos cos( 0 ) ( 0 ) ( 0 ),

m x c x F sign x b x

A
C t V x sign V xω π ρ

π

⋅ = − ⋅ − ⋅ − ⋅ +

 + + ⋅ ⋅ ⋅ + ⋅ ⋅ − − ⋅ − − 

&& & &

& &

 (11) 

where m – mass;  

x 
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 x – displacement;  

 ẋ – velocity;  

 c – stiffness of the linear spring;  

 F0, b – constants of linear generator damping;  

 (1 + C) – coefficient of pressing and suction sides interactions;  

 V0 – flow velocity;  

 ω0 – control actions harmonica angular frequency;  

 A – constant area,  

 ρ – air density, sign is + 1 or -1, depending of brackets signature. 

The task of parametric optimization is as follows: find a combination within the seven-parameter 

(m, c, F0, b, ω0, A, V0) space with given constraints on the parameter values that provide the 

maximum power generated by the flow.  

It is to be noted that the full resolution of such a task is not intended in this work. Note, however, 

that the best combination of the three parameters (m, c, ω0) is close to the resonance zone:  

 10 .c mω −= ⋅   

The graphs for this case are shown in Fig. 10-11. 

  

Fig. 10. Motion in phase plane:  

x – displacement of plate; v – velocity of plate 

Fig. 11. Small plate power: V0 - wind velocity 

10 m·s
-1

; A – 0.16x0.16 m; ω0 = 4·π, s
-1

 

Results and discussion 

1. From the results obtained, it is confirmed that the calculations for the fluid body interaction task 

assume a constant pressure in the boundary layer of the flow suction zone at low speeds (air flow). 

2. The pressure in the suction zone along the boundary layer is independent of the shape of the 

object, as it can be obtained from Fig. 7 above; this assumption is valid only at the low fluid flow 

speed. 

3. Theoretically and by modeling with ANSYS, it is shown that there is a fundamental difference in 

the interaction forces between curved and concave object forms. It is shown that concave shapes 

should not be approximated by flat surfaces, as local forces are generated in the concave in the 

flow. 

4. Form optimization criteria for different shapes involves the shape of the compression zone or the 

interaction area (when perforated geometries).  

5. To obtain perpendicular interaction force to the flow (lifting force), the shape of the suction side 

(leeward side) should also be optimized. 

6. A good fluid- body interaction analysis leads to analytical relations that can be extended for 

parametric optimization of fluid flow interactions. 

7. Using the fluid – body interaction phenomenon, stable results are obtained for the energy 

extraction system in air that can be extended to any form in future. 

Conclusions 

1. This work further develops the analytical method previously proposed by the authors for the 

determination of fluid and object interaction forces in concave fractured forms. 
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2. The proposed method can be extended to the study of non-stationary interactions that occur when 

the frontal area changes and when the relative flow velocity changes. 

3. The method can be applied to solve technical problems of engineers in a simplified way, replacing 

work-space-time programming methods for bodies moving with low speeds. 
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